A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations

نویسنده

  • F. X. Giraldo
چکیده

A spectral element semi-Lagrangian (SESL) method for the shallow water equations on the sphere is presented. The sphere is discretized using a hexahedral grid although any grid imaginable can be used as long as it is comprised of quadrilaterals. The equations are written in Cartesian coordinates to eliminate the pole singularity which plagues the equations in spherical coordinates. In a previous paper [Int. J. Numer. Methods Fluids 35 (2001) 869] we showed how to construct an explicit Eulerian spectral element (SE) model on the sphere; we now extend this work to a semi-Lagrangian formulation. The novelty of the Lagrangian formulation presented is that the high order SE basis functions are used as the interpolation functions for evaluating the values at the Lagrangian departure points. This makes the method not only high order accurate but quite general and thus applicable to unstructured grids and portable to distributed memory computers. The equations are discretized fully implicitly in time in order to avoid having to interpolate derivatives at departure points. By incorporating the Coriolis terms into the Lagrangian derivative, the block LU decomposition of the equations results in a symmetric positive-definite pseudo-Helmholtz operator which we solve using the generalized minimum residual method (GMRES) with a fast projection method [Comput. Methods Appl. Mech. Eng. 163 (1998) 193]. Results for eight test cases are presented to confirm the accuracy and stability of the method. These results show that SESL yields the same accuracy as an Eulerian spectral element semi-implicit (SESI) while allowing for time-steps 10 times as large and being up to 70% more efficient. 2003 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Spectral Element Semi-lagrangian Method for the Shallow Water Equations on Unstructured Grids

Abstract. The purpose of this paper is twofold: to give a brief yet comprehensive description of the spectral element and semi-Lagrangian methods, and to introduce a new method arrived at by fusing both of these impressive methods. The practical aspects of both methods are described in detail by their implementation on the 2D shallow water equations. These equations have been used customarily t...

متن کامل

Semi-lagrangian Transport Algorithms for the Shallow Water Equations in Spherical Geometry

Global atmospheric circulation models (GCM) typically have three primary algorithmic components: columnar physics, spectral tran-form, and semi-Lagrangian transport. In this study, several varients of a SLT method are studied in the context of test cases for the shallow water equations in spherical geometry. A grid point formulation is used with implicit, semi-implicit or explicit time integrat...

متن کامل

Quadrati Spline Galerkin Method for the Shallow Water Equations on the Sphere

Currently in most global meteorological applications, the spectral transform method or low-order finite difference/finite element methods are used. The spectral transform method, which yields high-order approximations, requires Legendre transforms. The Legendre transforms have a computational complexity of O(N3), where N is the number of subintervals in one dimension, and thus render the spectr...

متن کامل

Strong and weak Lagrange-Galerkin spectral element methods for the shallow water equations

The Lagrange-Galerkin spectral element method for the two-dimensional shallow water equations is presented. The equations are written in conservation form and the domains are discretized using quadrilateral elements. Lagrangian methods integrate the governing equations along the characteristic curves, thus being well suited for resolving the nonlinearities introduced by the advection operator o...

متن کامل

A spectral element shallow water model on spherical geodesic grids

The spectral element method for the two-dimensional shallow water equations on the sphere is presented. The equations are written in conservation form and the domains are discretized using quadrilateral elements obtained from the generalized icosahedral grid introduced previously (Giraldo FX. Lagrange– Galerkin methods on spherical geodesic grids: the shallow water equations. Journal of Computa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003